ARCHITECTURE
Group 3
Liam Martin
Aaliya Williams
Lucy Crabtree
Kai Nichol
Sammy Hori
Tim Gorst
Zac Ribbins

Introduction to the Architecture

After extensively outlining the requirements of our game, our team shifted focus
towards defining the architecture, ultimately settling on an object-oriented approach. To
facilitate the development of a robust system structure, we opted for Unified Modeling
Language (UML). This strategic decision played a crucial role in laying the groundwork
for our game system by enabling us to:

1. Create detailed models and visual representations of individual system
components, including state and sequence diagrams. These visualisations
provided clarity and structure to our architecture, facilitating the understanding
and communication of complex system relationships.

2. Establish a solid starting point for our system, providing a framework for iterative
development and adaptation during implementation. This iterative approach
ensures adaptability to evolving project requirements and facilitates efficient
development.

3. ldentify potential areas for code reuse and anticipate potential challenges or
complexities within the system. By pinpointing these components early on, we
could streamline development efforts and enhance code maintainability and
scalability.

We used LucidChart [1] to create our UML diagrams due to its extensive library of
pre-existing templates and libraries, which simplified the creation of comprehensive
and visually engaging representations of our system architecture.

Behavioural Diagrams
To gauge an idea of how our game will behave, we
created a variety of behavioural diagrams,

OPTIONS

g consisting of a ‘Use-Case Diagram’, ‘State Diagrams’
y and ‘Sequence Diagrams'.

Expecting
- Player to pick
option

The state diagram, [State Diagram - Bedroom.png],
demonstrates the state the system is in when the

rmemns P player enters their bedroom and is met with the
s choice of selecting a few options. It serves as a
potom e sequential representation of how the system
— proceeds after it receives each individual input from
® the user.

https://therealemissions.github.io/uoy-eng1/architectureDiagrams/State%20Diagram%20-%20Bedroom.png

The use-case diagram, [Use Case Diagram.png], illustrates two particular paths the
player can take once they've entered their student accommodation. The player has the
option to ‘Study’ or ‘Eat’ in which both choices have a direct impact on the status of the
player, both choices affecting the ‘Energy’ of the player in opposing ways.

Playe

A more in-depth illustration of this is
displayed by the sequence diagram, T

[Sequence Diagram - Study.png], as it

poses as a more explicit visual

representation of the effects on the status

of the player (actor). Each object has a
direct impact on the other and this is
shown by the ‘Desk’ object requesting

verification on the ‘Energy_Activity_Count’

studying is complete

from the ‘Energy Meter’ object in order to L s ——————

determine the next course of action the
system will take.

These behavioural diagrams served as a guiding framework for the subsequent
implementation phase.

Structural Diagrams

Given our OOP approach for game implementation, we opted to develop visual
representations using UML to serve as the foundation for our class structures. We used
Class Responsibility Collaborator (CRC) Cards [Bl CRC cards] and Class Diagrams.

With the aid of the Visual-Paradigm Tutorial [2] on UML class graphical notation, a Class
Diagram [Class Diagram], was created highlighting each individual class, their attributes
and methods, as well as their relationships with other classes/objects. From the

diagram, it is clear that inheritance would play a vital role in the subsequent
implementation of the game as well as composite relationships between a multitude of
classes, given many cannot exist without the other.

https://docs.google.com/document/d/1YHZDtejzCKX5a5rbMzUPWF8dh9DnP6O4l7TOt90Ji_g/edit
https://therealemissions.github.io/uoy-eng1/architectureDiagrams/Use%20Case%20Diagram.png
https://therealemissions.github.io/uoy-eng1/architectureDiagrams/Sequence%20Diagram%20-%20Study.png
https://drive.google.com/file/d/1G-SOY2V4waY-v2E3Ld4Q1fiBld2Aqksp/view?usp=drive_link

When considering the structure for the status effects of the player, we opted to use the
single interface PlayerMetric which is held within the parent class, PlayerMetrics. The
PlayerStudyLevel, PlayerHappiness and PlayerEnergy subclasses implement methods
from the interface for clean code and to ensure all the metrics can be used as expected.

PlayerMetrics

- energy: PlayerEnergy
- happiness: PlayerHappiness
- studyLevel: PlayerStudyLevel

+ changeMetric()
+ getMetric()

+ getMetrics()

+ dispose()

*

11

<<interface>> PlayerMetric

- Progress_bar_minimum: float
- skin: Skin

+ dispose()

11

11

11

11

PlayerStudyLevel

PlayerHappiness

PlayerEnergy

- progressBar: ProgressBar
- studyLevel: float

- progressBar: ProgressBar
- happiness: float

- progressBar: ProgressBar
- energy: float

+ PlayerStudyLevel()

+ getStudyLevel()

+ setStudylevel()

+ increaseStudyLevel()
+ decreaseStudyLevel()
+ getProgressBar()

+ getLabel()

+ PlayerHappiness()

+ getHappiness()

+ setHappiness()

+ increaseHappiness()
+ decreaseHappiness()
+ getProgressbar()

+ getLabel()

+ PlayerEnergy()

+ getStudyLevel()

+ setStudyLevel()

+ increaseStudyLevel()
+ decreaseStudyLevel()
+ getProgressBar()

+ getLabel()

Systematic Justification of the Architecture

When deciding on the architectural approach for our system, the inherent nature of the
game guided us towards adopting Object-Oriented Programming (OOP) as the most
suitable methodology. Several key factors influenced this decision:

e The structure of our game prominently features elements conducive to
inheritance. For example, various status meter bars exhibit similar behaviours,
differing primarily in the rate of increase/decrease. Adopting OOP facilitated the
creation of a ‘PlayerMetric’ parent class, from which specific meters such as
‘PlayerEnergy’ could inherit, thereby reducing redundancy and promoting code
reusability.

e The potential for encapsulation played a pivotal role in the choice of
programming style. OOP provided a framework for encapsulating an object’s
game state, simplifying state management and facilitating modifications.
Encapsulating the game state within an activity tracker object would streamline
the manager of player actions within the specific time frame, enhancing
gameplay dynamics and user experience.

Evolution of the project
Initially, the game design allowed players to freely choose activities without considering

their in-game needs. However, as we aimed to mirror real-life student experiences, we
re-evaluated this approach. We identified time constraints and streamlined the activities
into essential categories: EAT, ENTERTAIN, STUDY, SLEEP, NAP [CLASS]. To align with this
structure, we implemented checks to ensure players' needs were met before allowing

certain activities [CLASS]. Instead of automatically advancing to the next day at
midnight, players could only sleep after 16 hours of activities [CLASS], highlighting time
management. This evolution simplified the gameplay, ensuring it remained engaging

while accommodating our project's time limitations.

Requirements — Architecture
The table below relates the architecture to our requirements:

Classes

Requirement — Architecture Link

Player

UR_MOVEMENT, UR_INTERACTION, FR_INPUT_DETECTION,
NFR_RESPONSIVE -> Accurately detects and responds to user input
for movement and interaction.

PlayerMetric

FR_ENERGY_ACTIVITY_COUNT, FR_HAPPINESS_ACTIVITY_COUNT,
FR_STUDY_ACTIVITY_COUNT -> Adjusts the need level based on
completed activities.

GameScreen

UR_ACTIVITY_CHOICE -> Users can select from multiple activities
through interaction with buildings and items.
FR_GAME_DURATION -> Controls the game duration, ensuring it
runs for roughly 5 to 10 minutes.

FR_SLEEP -> Manages the automatic simulation of sleep between
12am and 8am after 16 hours of activities.

NFR_GAME_LENGTH -> Ensures the game is played within a
reasonable time frame, with the average duration not exceeding
10 minutes.

FR_UI, UR_UX -> Ensures that the user interface meets expectations
in terms of clarity and usability.

EndScreen

UR_GAME_END -> The game concludes after seven in-game days,
with win conditions communicated to the user through the game
interface.

PreferencesScreen

FR_UI, UR_UX -> Ensures that the user interface meets expectations
in terms of clarity and usability.

MainMenuScreen

FR_UI, UR_UX -> Ensures that the user interface meets expectations
in terms of clarity and usability.

BackgroundMusic

NFR_PLAYABLE -> Ensure smooth operation without technical
issues or crashes, contributing to a stable and reliable gaming
experience.

ButtonClickSound

NFR_PLAYABLE -> Ensure smooth operation without technical
issues or crashes, contributing to a stable and reliable gaming
experience.

References:
11 Lucidchart
2] Visual-Paradigm Tutorial

Bibliography:

Sequence Diagram Guide Used As Reference

https://www.lucidchart.com/pages/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.lucidchart.com/pages/uml-sequence-diagram

